6.6.7

(a) The design matrix is given by

$$
X=\left[\begin{array}{ll}
1 & 1^{2} \\
2 & 2^{2} \\
3 & 3^{2} \\
4 & 4^{2} \\
5 & 5^{2}
\end{array}\right]
$$

The observation vector is given by

$$
\mathbf{y}=\left[\begin{array}{l}
1.8 \\
2.7 \\
3.4 \\
3.8 \\
3.9
\end{array}\right]
$$

The unknown parameter vector is

$$
\boldsymbol{\beta}=\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right]
$$

(b) Solving the normal equations $X^{T} X \hat{\boldsymbol{\beta}}=X^{T} \mathbf{y}$ gives the least squares solution $\hat{\boldsymbol{\beta}}=(1.76,-0.20)$.

6.7.13

Let $(\mathbf{u}, \mathbf{v})=\mathbf{u} \cdot \mathbf{v}$. We check linearity:

$$
\begin{aligned}
\langle A(c \mathbf{u}+d \mathbf{v}, A w\rangle & =(c A \mathbf{u}+d A \mathbf{v}, A w) \\
& =c(A \mathbf{u}, A w)+d(A \mathbf{v}, A w) \\
& =c\langle u, w\rangle+d\langle v, w\rangle
\end{aligned}
$$

Symmetry:

$$
\langle\mathbf{u}, \mathbf{v}\rangle=(A \mathbf{u}, A \mathbf{v})=(A \mathbf{v}, A \mathbf{u})=\langle\mathbf{v}, \mathbf{u}\rangle
$$

Positive definiteness: $\langle\mathbf{u}, \mathbf{u}\rangle=(A \mathbf{u}, A \mathbf{u}) \geq 0$, with equality exactly when $A \mathbf{u}=0$. Since A is invertible this is equivalent to $\mathbf{u}=0$.

6.8.4

The two methods are the same, since in the second case the error will be exactly twice the error in the first case, and minimizing twice a quantity is the same as minimizing the quantity itself.

